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Abstract
This paper presents an empirical study of some non-

exhaustive approaches to optimizing preferences within
the context of constraint-based, mixed-initiative planning
for mission operations.  This work is motivated by the
experience of deploying and operating the MAPGEN
(Mixed-initiative Activity Plan GENerator) system for the
Mars Exploration Rover Mission.  Responsiveness to the
user is one of the important requirements for MAPGEN;
hence, the additional computation time needed to optimize
preferences must be kept within reasonable bounds.  This
was the primary motivation for studying non-exhaustive
optimization approaches.

The specific goals of the empirical study are to assess
the impact on solution quality of two greedy heuristics
used in MAPGEN and to assess the improvement gained
by applying a linear programming optimization technique
as a post-processing step.

Introduction
This paper presents an empirical study of some non-

exhaustive approaches to optimizing preferences within
the context of constraint-based, mixed-initiative planning
for mission operations.  Our motivation derived from the
problem of activity planning for the Mars Exploration
Rover (MER) mission and the system used to accomplish
this task: MAPGEN, Mixed-initiative Activity Plan
GENerator (Bresina, et al., 2005a).  Responsiveness to the
user is one of the important requirements for MAPGEN;
hence, the additional computation time needed to
optimize preferences must be kept within reasonable
bounds.  This was the primary motivation for studying
non-exhaustive optimization approaches.  A secondary
concern was to incorporate preference optimization into
MAPGEN without major changes to the planner’s search
algorithm.

The MAPGEN system represents a successful mission
infusion of mixed-initiative planning technology.
MAPGEN was deployed as a mission-critical component
of the ground operations system for the Mars Exploration
Rover (MER) mission.  Each day, the Tactical Activity
Planner (TAP) employs MAPGEN to collaboratively plan
the activities of the Spirit and Opportunity rovers, with
the objective of achieving as much science as possible
while ensuring rover safety and keeping within the
limitations of the rover’s resources (e.g., power).

The MER mission has been operating with great
success for over two years, and MAPGEN continues to be

employed for activity plan generation for the Spirit and
Opportunity rovers.  During the multi-year deployment
effort and subsequent mission operations experience, we
have learned valuable lessons regarding application of
mixed-initiative planning technology to mission
operations (Bresina, et al., 2005b).  These lessons have
stimulated new research in mixed-initiative planning with
preferences.

The MER scientists express their intent to the
MAPGEN system through the requested activities, the
associated priorities, and science constraints.  By
enforcing the specified science constraints, MAPGEN
ensured that the data collected satisfied the science intent.
However, in addition to these hard constraints, the
scientists often have temporal preferences in mind, which
could yield higher quality data.  Such temporal
preferences cannot be formally encoded in MAPGEN.
Some of these preferences are verbally communicated to
the TAPs, and if they have time, they try to satisfy them
by fine-tuning the plan.  In addition, there are other more
global preferences related to solution quality that were not
formally encoded and were left up to the TAPs to satisfy.

We have extended our research version of MAPGEN
by enabling the system to enter temporal preferences and
are exploring alternative techniques for optimizing the
satisfaction of (possibly competing) preferences.  In this
paper, we focus on non-exhaustive approaches that are
more efficient and easier to integrate into MAPGEN, and
we present the results from an empirical study aimed at
evaluating these approaches.  Specifically, the goals of the
empirical study are the following: (i) assess the impact on
solution quality of a greedy priority-based heuristic used
in MAPGEN, (ii) assess the additional impact of a greedy
preference-based heuristic used in MAPGEN, and (iii)
assess the improvement gained by applying a linear
programming technique to the final solution.  In order to
make it easier to perform a controlled empirical study, we
employed analogs of MAPGEN and the MER planning
problems.

In the next section, we present background material on
aspects of MAPGEN that are relevant to the empirical
study, the representation and types of temporal
preferences, and our linear programming optimization
technique.  In the subsequent sections, we describe the
design of the empirical study and discuss the results.  We
close with some concluding remarks.



Background
The core of the plan representation and reasoning

capabilities in MAPGEN is a constraint-based planning
framework called EUROPA (Extendable Uniform
Remote Operations Planning Architecture), developed at
NASA Ames Research Center (Jónsson, et al., 1999;
Frank and Jónsson, 2003).

In constraint-based planning, domain rules are
specified in terms of activity/state patterns and constraint
schemas.  A given constraint schema is applied to any
instance matching the associated pattern.  Search methods
and other techniques for manipulating partial plans then
build on this framework.

The science constraints are relations between specific
activities in a planning problem instance.  The scientists
use two types of science constraints: temporal bounds and
temporal ordering relations.  The temporal bounds are
typically constraints on when an activity can start due to,
for example, lighting conditions or temperature.  The
typical ordering relations are constraints between the end
of one activity and the start of another.  For example, a
hazcam documentation image of an arm placement must
be taken at least two minutes after the arm is placed (to
ensure vibrations have subsided) and before it is moved
again.

Consistency of the developing plan is maintained using
an underlying simple temporal constraint network, or
STN (Dechter, et al., 1991).  One advantage of STNs is
that rather than doing simple consistency checking, they
work by eliminating inconsistent values from variable
domains.  Specifically, they maintain arc-consistency,
which for STNs is equivalent to full consistency.  In
effect, they maintain a family of related solutions, called a
flexible solution, rather than just a single grounded
solution.  A flexible solution provides flexibility because
it can often merely be refined, i.e., further restricted, in
response to additional constraints instead of requiring
search for a new solution.

Minimum Perturbation Heuristic
Although MAPGEN constructs flexible plans, the plan

that is displayed to the user is a grounded solution; i.e., a
specific consistent instantiation of the underlying flexible
plan.  This is selected to be as close as possible to an
internally maintained reference schedule.  More
importantly, the reference schedule is used to support a
minimum perturbation approach, where planner-initiated
changes to the previous plan are minimized.  Users tend
to expect that small extensions to a plan will cause only
minor plan modifications and dislike it when they cause
drastic global modifications.  The minimal perturbation
heuristic biases the ordering decisions such that the
activities remain as close to their reference times as
possible.

The reference schedule is initially based on the science
constraints and the initial start times of the activities,
which are set by the scientists.  This initial reference is

computed by first solving a relaxed version of the
planning problem composed of only the science
constraints; the solution produced is a flexible plan.  The
reference schedule is determined by grounding this
flexible plan, by the following solution grounding
algorithm, to be close to the initial activity start times.

For each timepoint x with reference position t do the
following:

(i) If t is within the STN bounds for x,
then add a grounding constraint that sets x to t.

Else if t is less than the lower bound (lb) for x,
then add a grounding constraint that sets x to lb.

Else if t is greater than the upper bound (ub) for x,
then add a grounding constraint that sets x to ub.

(ii) Propagate the effect of the new constraint.

The scientists can bias the initial reference schedule to
reflect their preferences.  One option is to bias the
placement of activities to be when solar power is at a
maximum by setting all start times to the time of peak
power.  During the planning process, the reference
schedule is continually updated to reflect the evolving
plan.

Priority Heuristic
A key factor in the design of MAPGEN planning

methods was that the set of science observation requests
oversubscribes available rover resources and, thus, each
activity has a given priority that had to be taken into
account.  The assigned priority is based on the science
team’s judgment of relative importance; the MER
scientists used five different priority levels.

The priorities are the dominant factor in assessing
solution quality.  The priorities are treated
lexicographically; that is, getting one activity at a given
priority level into the plan is worth more than any number
of activities of lower priority.

During planning, the priorities are used to determine
the order in which activities were planned.  Furthermore,
if a planning request cannot be completed, MAPGEN can
reject lower-priority activities to make room for higher-
priority activities in the plan.

Preferences
We have extended the research version of the

Constraint Editor to allow specifying temporal
preferences on an activity’s start or end time, as well as
on distances between start/end time points of two
activities (see Figure 1).  In particular, we have enhanced
the Constraint Editor tool to allow specification of a sweet
spot in addition to a base constraint.  The sweet spot is an
interval of maximum preference and outside the interval,
the preference drops linearly from its maximum value.
Note that a sweet spot in a science preference can be a
single point to indicate, for example, the preference to
start as early or late as possible.  This preference function
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Figure 1: Editing science preferences in CE.

form corresponds to the temporal preferences most
frequently expressed by the MER scientists.

The preferences represented by the initial reference
schedule can also be represented in this same way.  In this
case, the temporal preference is on an activities start time
and the sweet spot is a single timepoint determined by the
reference schedule.  In order to ensure that an early and a

late deviation (from the reference time) of the same
magnitude have equal preference, the zero crossings of
the preference function must be equidistant from the
reference time.   To accomplish this, one of the zero
crossings may lie outside the base constraint.  We refer to
these temporal preferences as reference preferences.

Figure 2 illustrates the form of a typical science
preference and typical reference preference.  In this
figure, the preferences have a maximal value of one;
however, each preference is associated with a weighting
factor, which determines the relative impact of the
preference during optimization.

Utilitarian Optimization
To effectively solve constraint problems with

preferences, it is necessary to be able to order the space of
assignments to times based on some notion of global
preference and to have a mechanism to guide the search
for solutions that are globally preferred.  Such a
framework arises as a simple generalization of the Simple
Temporal Problem (STP) (Dechter, et al., 1991), in which
temporal constraints are associated with a local preference
function that maps admissible times into values; the result
is called Simple Temporal Problem with Preferences
(STPP) (Khatib, et al., 2001).  Globally optimal solutions
to STPPs emerge as a result of well-defined operations
that compose and order partial solutions.  Different

Figure 2: Preference functions
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concepts of composition and comparison result in
different characterizations of global optimality.  One
natural criterion is utilitarian, where the global value of a
solution is the sum of the local values.

It has been shown in (Morris, et al., 2004) that
determining the set of all utilitarian optimal solutions as
an STP is tractable where all the preference functions are
convex and piecewise linear, which is the case for our
preference functions.  The paper shows that this utilitarian
optimization problem can be reduced to a Linear
Programming Problem (LPP), which is known to be
solvable in polynomial time by Karmarkar’s Algorithm
(Corman, et al., 1990).   Furthermore, the paper shows
that constructing the STP representing all optimal
solutions (i.e., the optimal flexible plan) can be
accomplished by adding constraints to the STP, and that
the constraints to add can be determined by solving the
dual of the original LPP.

In our research version of MAPGEN, we have
incorporated an optimization technique based on this
approach.  Given a flexible plan produced by MAPGEN,
this new facility further restricts the plan to one
containing only utilitarian-optimal solutions with respect
to a set of given temporal preferences.

Empirical Study Design
The underlying question that initially motivated this

empirical study is: “Can we incorporate preference
optimization into MAPGEN without undue impact on the
responsiveness of the system to the user?”  A secondary
concern was to incorporate this new capability without
major changes to the planner’s search algorithm.

We were interested in trying to incorporate the linear
programming based utilitarian optimization into
MAPGEN and designed a couple of ways this technique
could be employed.  One use is to apply the optimization,
as a post-process, to the family of solutions represented
by a flexible MAPGEN plan in order to display the most-
preferred grounded solution to the user.    The technique
can also be employed in a pre-processing step to compute
a different type of reference schedule — one that
represents a globally optimal solution to the relaxed
planning problem with temporal preferences (science and
reference).  Hence, the minimal-perturbation method
could be employed to bias the planning decisions so as to
stay close to this “ideal” reference schedule.

The search algorithm in MAPGEN already includes
aspects that could be employed to support the
optimization of preferences; namely, the activity priority
heuristic, as well as the reference schedule mechanism
and the associated minimal perturbation heuristic.  Hence,
one question to be answered is: what is the impact of each
of these two greedy heuristics on the quality of solutions
generated, when the quality criteria included preferences
in addition to the priorities of the activities that made it
into the plan.

In order to achieve the goals of the empirical study, we
needed to be able to vary the configuration of the problem
solver.  The MAPGEN system was not designed to be
configurable in this way; hence, it was not practical to use
the system directly.  Thus, we built a configurable
problem solver that is an analog to the planner in
MAPGEN.  We also wanted to be able to control the
composition of the suite of problem instances; this was
easier to accomplish with an analog to the MER domain
model and a problem generator for this analog model.

Problem Suite
The domain model for the study has one activity type,

called TakeSample .  The planning horizon for all
problems is between 10:00 and 16:00 (local time), and all
activities in the plan must occur within this time span.  A
problem instance consists of the following aspects:

• A set of TakeSample instantiations, each with a
set duration and priority.

• A set of precedence ordering constraints
between pairs of TakeSample activities.

• A set of temporal bound constraints on the start
time of the TakeSample activities.

• A set of science temporal preference functions
(i.e., “sweet spots”) w.r.t.  the start times.

• A set of reference temporal preferences w.r.t.
the start times.

In the problem suite, the initial start times of  all
activities are set to noon.  Thus, the computed reference
preferences will be biased to schedule activities near the
solar power peak time.  Note that the reference
preferences will vary across problem instances since the
set of temporal constraints (bounds and orderings) will
vary.  Each activity is assigned a priority randomly
chosen from the set {1, 2, 3, 4, 5}, where 5 is the highest
priority.  Each activity is assigned a duration (in seconds)
randomly selected the set [60 4500].  This was considered
a reasonable analog to the MER mission with short
activities.  For example, Miniature Thermal Emission
Spectrometer measurements can be of short duration
whereas Alpha Proton X-Ray Spectrometer reading might
be on the higher end.

There are three control parameters for the generator:
the number of activities, the number of precedence
constraints between activities, and the maximum
percentage of the sweet spot.

For each problem, the generator assigns each activity a
duration, randomly chosen between one minute and the
specified maximum value.  The ordering constraints are
generated by randomly choosing the specified number of
pairs of unordered activities and imposing a precedence
constraint between them.  The transitive closure of the
ordering constraints is maintained during this process, so
that two activities are considered unordered only if no
explicit precedence or transitive ordering exists between
them.



The set of constraints must be consistent; to ensure this,
the generation of temporal bounds on start times is based
on the generated ordering constraints, as follows.  The
activities are first temporarily assigned random start
times, restricted such that they obey the precedence
orderings.  Second, for each activity a lower bound is
randomly chosen within the interval [10:00, S], where S is
the activities assigned start time.  Likewise, an upper
bound is randomly chosen within the interval [S, 16:00].
Note that it is possible for a bound constraint to equal the
planning horizon, and it is possible for an activity’s start
time to be restricted to a single time point.

The science preferences are generated by first
randomly choosing the sweet spot's length between zero
and the specified maximum.  Second, the lower bound is
randomly chosen such that both sweet spot bounds are
within the bounds of the associated hard constraint.  Note
that the sweet spot may be a single point.

The complete problem suite is generated from the
following control parameter ranges:
• Activity Count: The total number of activities to

be included.  The values are {10, 20, 30, 40, 50}.
• Precedence Constraint Percent (PCP) – The

number of ordering constraints between activities
as a percentage of the activity count. The values
are {0, 50, 100, 150}.

• Sweet Spot Percent (SS) – The maximum
percentage of the start time bounds that can be
used for the sweet spot in expressing a temporal
preference.  The values are {25, 75}.

This yields forty control parameter combinations, or
problem types.  For each problem type, ten distinct
problem instances are generated.  The ten scores are
averaged to obtain a score for the problem type.

The primary problem characteristics of interest are the
degree of over-subscription, the number of alternate
solutions, and the variance of quality in the solution
space.  If it is easy to fit all the activities into a plan, then
the priority heuristic will not have much, if any, impact on
solution quality.  If there are very few solutions or very
little variance in solution quality, then optimizing
techniques will not have much effect.

We can indirectly affect the above characteristics with
the three control parameters of the generator.  Increasing
the number of activities will tend to increase the level of
oversubscription.  Increasing the number of ordering
constraints will tend to reduce the number of solutions.
The affect of the control parameters on the quality
variance in the solution space is more difficult to predict
because they all interact.

Solution Quality Function
We present the priority and preference solution quality

factors separately so that we can better illustrate the
impact of the different problem solver configurations.

Both factors are defined in terms of a number of
individual attributes and evaluated with respect to a
grounded solution.

Each quality attribute is assigned a real value between
zero and one that indicates the degree to which it is
satisfied, where one indicates full satisfaction.  Each
attribute is weighted based on its relative importance.
Each of the two factors is a summation of all the
associated weighted attribute values.

As was the case in the MER mission, the activity
priority levels are treated lexicographically.  There is a
priority attribute for each activity.  The attribute value is
one if it is in the plan and zero if not.  The attribute
weight is ten raised to the power of the associated
activity’s priority.

For the purpose of this experiment, we assume that all
science preferences have equal importance and that all
reference preferences have equal importance.
Furthermore, we want each of the two preferences classes
to have equal impact on the overall score.  We weight
each science preference by one divided by the number of
science preferences; similarly, we weight each reference
preference by one divided by the number of reference
preferences.

Solver Configurations
All the configurations are based on a EUROPA2

Solver, which uses chronological backtracking.  As a
baseline configuration, we are using a Solver without any
heuristic bias.  The planning order of the activities is
randomly selected, and which activities get into the plan
is random; i.e., it is not based on the activity priorities.
The temporal preferences are ignored and the ordering
decisions are made arbitrarily.

The second configuration is a priority-only solver; it is
a customization of the baseline solver that includes an
analog of MAPGEN’s priority heuristic.  This solver
determines planning order based on activity priority.  As
in the baseline solver, ordering decisions are still made
arbitrarily.

The third configuration is a priority-plus-preference
solver, built from the priority-only solver by adding a
greedy technique for satisfying temporal preferences.
This solver uses an analog of MAPGEN’s minimal
perturbation heuristic biased towards an “ideal” reference
schedule; we refer to this analog as the preference
heuristic.   As described at the beginning of this section,
the ideal reference schedule is produced via our LP
optimization technique and it represents a globally
optimal solution to the relaxed planning problem with
temporal preferences.  Hence, in this solver, the planning
order is determined by priorities, and the ordering



decisions are biased so that activities stay as close to their
ideal reference time as the hard constraints allow.

Evaluation Methodology
The primary aims of the empirical study are to

evaluate the impact of the priority heuristic, the
preference heuristic, and the LP optimization.  We first
measure the impact of using the priority heuristic to
determine planning order by comparing the performance
of the baseline solver with that of the priority-only solver.
We then measure the additional impact of using the
preference heuristic to bias ordering decisions during
search by comparing the performance of the priority-only
solver with that of the priority-plus-preference solver.
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Figure 3: Priority Improvement

Note that each of these three solvers constructs a
flexible plan; hence, we cannot directly apply the solution
quality function to obtain a performance measure.  Each
flexible plan represents a set of ground solutions, which
can vary with respect to quality.  The quality measure that
we’ve chosen is the expected quality of the flexible plan’s
execution, and we estimate this measure via sampling.
Each sample yields a randomly chosen execution trace as
follows.  At each execution step, first, the set of activities
that is eligible to execute next is determined from the
flexible plan’s underlying constraint network.  One of
these activities is chosen randomly and its execution is
simulated by advancing time.  The impact of grounding
the activity’s start time is also propagated through the
constraint network.  Each sampled execution trace
corresponds to a grounded plan and can, thus, be scored
with our solution quality functions.  The mean of the
resultant set of scores is an estimate of our expected
quality measure.

Mean quality score is used as a basis for evaluating the
added impact of LP optimization for each of these three
solvers.  Applying the LP optimization technique to the
flexible plan output of a solver determines the optimal

quality score achievable with the flexible plan.  We
compute the improvement, expressed as a percentage,
obtained by this LP optimization post-process as one
hundred times the difference between the optimum and
the mean, divided by the mean.

Another important aspect of problem solving, besides
solution quality, is computational cost.  Thus, as part of
this empirical study, we compare the different
configurations with respect to computation time.
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Figure 4: Post-process LP Optimization Impact

Empirical Results
Figure 3 shows the improvement gained by employing

the priority heuristic.  For a given activity count, the mean
priority score is calculated for all solutions for both the
baseline and priority only configurations. The
improvement is computed as one hundred times the
difference between the priority-only solver’s mean
priority score and the baseline solver’s mean priority
score, divided by the baseline solver’s mean priority
score.  For a given value of the activity count control
parameter, there are eight problem types and, hence,
eighty problem instances.  In Figure 3, the average
improvement over the eighty problem instances is plotted
for each of the five values of the activity control
parameter.  The results clearly show the strong
performance of the priority heuristic and the general
increase in its effectiveness as the problem becomes
increasingly over-subscribed.

Figure 4 illustrates the impact of applying the post-
process LP optimization to the flexible plan generated by
each solver configuration.  The percentage improvement
(defined in the previous section) is plotted for each
activity count parameter; hence, it is an average over
eighty problem instances for each configuration.  The x-
axis in Figure 4 orders the problem types in terms of
increasing values of the activity count parameter.



The results are striking in terms of the strong negative
correlation between LP improvement and higher activity
counts.  This seems reasonable since the more activities
packed into a solution, the less flexibility and thus the
smaller improvement to be obtained with an optimal
grounding.

0

1

2

3

4

5

6

7

0 20 40 60

Activity Count

P
e
rc

e
n

ta
g

e
 I

m
p

ro
v
e
m

e
n

t

  

Figure 5: Temporal Preference Improvement

Figure 5 illustrates the improvement obtained by
employing the preference heuristic; that is, the percent
improvement gained by the priority-plus-preference
solver as compared to the priority-only solver.  The
percentage improvement (defined in the previous section)
is plotted once again for each of activity count parameter
value; hence, it is an average of the mean optimal
preference score over the eighty instances.  The x-axis in
Figure 5 orders the problem types in terms of increasing
values of the activity count parameter.  The data indicates
a modest benefit from the preference heuristic.
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Figure 6: Overhead of LP on Solution Time

Figure 6 shows results on the computational overhead
of LP optimization.  Average percentage overhead was
calculated as the mean overhead over all solutions for
each activity count.  The data suggests a reasonable cost
for small problems and that the overhead diminishes as

the problem size increases.  This is explained by the fact
that time to find a flexible solution is increasing at a
higher rate for more over-subscribed problems,
attributable to increased backtracking. The over-
subscribed nature of the problem is not relevant when
doing LP optimization.
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Figure 7: Solution Times for 3 Configurations

Figure 7 presents average solution times for each
configuration, measured in CLK_TICK units obtained
using the clock() function in time.h.  Recall that the
priority-plus-preference solver requires an additional run
of LP to find an initial optimum solution to the relaxed
problem in order to seed the heuristic (i.e., initialize the
reference schedule).  The graph clearly shows the steep
increase in solution times noted above. The close
performance results for the baseline and priority only
configurations indicate the low overhead of the priority
heuristic.  The higher cost of the priority-plus-preference
configuration is largely attributed to the additional run of
LP optimization required up front to seed the reference
points for the preference heuristic.

Related Work
Related to our employment of activity priority

heuristics, there is the work on resource contention
metrics defined for oversubscribed scheduling problems
(Kramer, et al., 2006).  In their work, a task insertion
heuristic, based on max-availability, uses an estimate of
resource contention to assign tasks to intervals expected
to have the best worst-case resource availability.  Such a
heuristic was shown to generate schedules of similar
quality to other contention-based heuristics with much



less computational overhead. It would be interesting to try
their approach for our activity selection stage.

Related to the temporal preference aspect of our work,
there is the effort on optimal competitive scheduling for
deep space network (Frank, et al., 2006).  In their work,
activities have flexible start times and flexible durations,
but they have to be completed within their feasibility
windows. Preferences are expressed over durations
similarly to our preferences over start times.  Similar to
our approach, they handle oversubscribed scheduling
problems by first ordering the subset of activities to be
scheduled and then applying LP optimization.  Frank, et
al., identified several classes of problems that were
guaranteed to be tractable, and it would be interesting to
evaluate the applicability of these results to our approach.

Concluding Remarks
There are three main findings of our empirical study.

First, we find that the priority heuristic is increasingly
effective as the problem becomes more over-subscribed.
In a mission where resources are over-subscribed and
activity priorities have a lexicographic ordering, this
heuristic is very relevant.  Second, we find that for a
modest cost, the use of LP optimization to find a
grounded solution provides meaningful improvement to
the preference score and the improvement is greater for
solutions of greater flexibility.  The usefulness of this LP
post-processing technique is independent of whether the
problem is over-subscribed.  Hence, this technique is a
good compliment to least commitment planning and
scheduling.  Third, we find that the benefits obtained from
using the preference heuristic were modest overall (2% -
6%) and its effectiveness diminished with more highly
constrained problems.  We speculate that the poor
performance of the preference heuristic is attributable to a
large discrepancy between solutions to the relaxed
problem and those of a resource-constrained problem,
particularly in a case of high resource contention.

There are a number of additional interesting
observations to make.   The baseline solver did not
employ heuristics to improve search efficiency.  We did
not find any degradation in search efficiency across solver
configurations.  When heuristics can be effectively used
to improve search efficiency, there may be a conflict with
the methods evaluated to improve solution quality; thus
leading to a greater overhead to achieve quality
improvements.  Furthermore, we used an open source LP
solver (GNU LPK), which is not highly optimized.  More
finely tuned LP solvers could reduce the overhead of
using LP considerably.  Finally, our work focused on non-
exhaustive techniques.  We plan to explore uses of
branch-and-bound algorithms to find complete optimal
solutions within reasonable computation time bounds.
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